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I. INTRODUCTION

Very high burning rate (VHBR) propellants are needed for such
applications as the monolithic charge and the traveling charge. These
propellants generally contain RIX (hexahydro-l,3,5-trinitro-l,3,5-triazine)
wnd/or triaminoguanidine nitrate (TAGN) together with a borohydride such as
one of the HIVELITES (Teledyne-McCormick-Selph). The borohydride greatly
accelerates the burning rate of the propellant. The purpose of the present
work 18 to elucidate the chemical mechaniems responsible for the burning rate
acceleration, with the ultimate goal of optimizing propellant formulations for
demonstration of the traveling charge concept, e.g., maximum "catalytic”
effects with minimum sensitivity,

The approach employed involves gas chromatographic-mass specutroscopic
(GC-MS) studies on the pyrolysis products of pure RIX and of RDX-K By 2H) 2
mixtures. A number of previous studies (reviewed in References 2-;) ave
reported detailed analysis of the permanent gaseous products from ‘
decomposition of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7~tetrazocine) and
for RIX. The present work is concentrated mainly on the less-volatile
products, namely those whose volatilities are intermediate between those of
the more-commonly-studied permanently gaseous products on the one hand, and
that of unreacted RDX on the other,

IT. EXPERIMENTAL

RDX was obtained by crystallization of Class A military grade RDX from
acetone, This reduced the HMX content from ca 5-10% to ca 0.3%. In an
attempt to minimize particle-size effects, a portion of RDX was ground in a
mortar for several minutes and divided into two portions, one of which was
mixed with the K,B,oH,5 and the other used in the uncatalyzed runs. Use of a
set of standard seives showed that the average particle size was about 100u.
A sample of K,B;,H;, was obtained from Callery Chemical Company, Callery,
Pennsylvania, e GC-MS experiments were carried out using a Hewlett-Packard
(HP) 5890 gas chromatograph, with a HP 5970 mass-selective detector and a
59970B workstation consisting of a 9133 disk drive, 9100-236 computer and
associated software (including library search software and complete NBS
library of about 38,000 compounds), printer and plotter. 'The software is
capable of producing complete spectra at any point, as well as either total
ion chromatograms (plots of total-ion intensity vs. time), or ion
chromatograms (plots of intensity vs. time for any particular ion or group of
ions). Pyrolyses were carried out with a Chenical Data Systems (CDS)
"Pyroprobe"” pyrolyzer with coil probe, which was fitted to the injection port
of the 5890 gas chromatograph by means of a heated interface, which was also
obtained from CDS. The pyrolysis temperatures given ave pyroprobe set
temperatures.,

In a typical run, an unweighed sample (ca ! milligram) was put into a
quartz tube 25 mm long having an inside diameter of 2 mm; the sample was
retained in the tube with small plugs of quartz wool on either side. The
sample was pyrolyzed by heating the probe to the desired tempurature (given in
the tables) with the fastest possible heating rate (ca 73°C/msec) and holding
it there for 20 seconds. A split inlet was employed, with a split ratio of
ca 30, The GC carrier gas was helium, with a flow rate through the column of
ca 0.5 ml/min., Total flow was ca 40-45 ml/min, and the inlet purge flow was




ca 6 ml/min, The GO column was an HP-1 column {crosslinked methyl silicone
gum, 12 m long, 0.2 mm 1.d.; 0.3um film thickness); the initial GC oven
temperature was 70°C, for 3 minutes followed by heating at 20°C/minute to a
final temperature of 210°C, followed by a final S~minute hold time.

IIT. RESULTS

Chromatograms and mass spectra were obtained for decompoaition of RIX
alone, and for an RMX-K,B)oH)o mixture containing 19X KyBysH;». Several runs
were carried out at eac oi tﬁe following temperatures: igﬂ 400, 600 and
800°C. Typical chromatograms are ahown in Figures 1-8.

Tables 1~4 include a summary of intensities of some of the more
significant peaks in the spectra of i,3,5-triasine formed in the
decompositions. These tables represent series of runs carried out on the same
day, all runs on a given day being carried out either with or without addad
RyBysHyne An additional serties of runs was carried out (Table 5), in which
runs with and without added ¥,B were alternated on the same day; it was
hoped that this alternation o cata yzed and uncatalyzed runs on the same day
would minimize differences between runs due to factors such as operator
technique. The numbers in Tables 1-5 represent irntegrated total-ion
intensities in the region 0-1 minute (Column 4), and integrated intensities of
the single-iun intensities of the peaks at ca 0.5 minute in the single~ion
chromatograns for m/e 44, 54, and 81. These were by far the mnst intense
peaks in the chromatograma,

Figures 9a-9c are respectively the spectrum of a tvpical },3,5-triazine
peak from the present work; the NBS library spectrum of 1,3,5-triazine; and
the mass spectrum of an authentic sample of 1,3,5-triazine obtained on our
apparatus.

Table 6 is a table of retention times for the most important peaks
observed in the chromatograms of the products of the decomposition runs. The
numbers in the "Figure"” column of this table are those of the figures in che
present report which give typical spectra for the respective peaks; these
spectra are given in Figures 10-23, Note that many of the spectra in Figures
9-25 undoubtedly represent mixtures rather than pure components. This can be
seen from some of the entries in Table 6, as well as from the baseline
elevation in the 0.5-14 minute region of Figures 1-8.

Figure 24 is8 a chromatogram from heat-treatment of K B)oH), at 600°C;
note that it contains two peaks, one at ca 0.4 minutes an %e other at ca 6
minutes. Peak intensities increased with increasing temperature, as did the
intensity of the second peak relative to the first. The 0.6 minute peak was
identified from its mass spectrum as triethylamine, presumably remaining in
traces from preparation of the K,B 2"1 +« The 0.4 minute peak remains
unidentified, A typical mass spectrum of the 0.4 minute peak is chown in
Figure 25; this spectrum resulted from decomposition at 800°C.,

10
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.

TTr ni ®-cGUMBES 0

L
6003

BORE W
4200 3 ‘ |
J'-\ E .‘\_\ “' .-n

rony | YA g e A '
X .“' h-ﬁ‘\.v.-vﬂ‘l"“ IR SRR AL LANRE \.___ . .
[ R e e et o T T e L SO Y--.,."".—"..—-"‘“';“" -
B B LB e lg .13
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Table 6., Table of Peaks in Toedl-Ion§0hr¢mctograﬁs-froa'iﬁﬁ aﬁd
RDX=Ka By oH; 9 Decompositions

Time Spectrum
(minutes) Occurrence (Frigure) Remarks
ca 0O=1 All Conditions 9a (Triazine) Includes permanent gases

10 (oxadiazole(?)) (Ny0, C05), 1,3,5-triazine
5 a peak with highent
mass at m/e 70 (1,2,4~
oxadiazole?)

ca {-2,5 All Conditions 1-8% Especially at low
temperatures, this region
is difficult to . . R
characterize. It sonetincs
includes hroad, variable
peaks whose spectra
resemble formamide.

VoAt ok
L

1.720.2 All Conditions 11 Appears under all
conditions. Llooks like a
mixture.

A: Highest mass = 99, .
R: Highest mass = 73. '1
Ts R HC(=N)NHC(=N)H or
Nimethylformamide?

2.1 High-T Cat. 12 Sometimes present at high © g
temperature, from 1
decomposition with added

KaBjaHyge 4

3.0x0.0 All Conditions 13 Spectrum shows this is not
1,3,5~triazine N-oxide,
Present under all
conditions, especially at
high temperature with added
KZBnH,?. looks like a
mixture.
A: Hichest mass = 108/109.

R: Highest mass = 96,

V-

3.3 Low-T Uncat, 14 1,3,5~-Triazine N-oxide
(tentative), Sometimes
appears at low (250°C)
temperature for RNDX alone;
not seen at higher
temperatures or with added

K2B12H19

- A .

4.6 Low-T Uncat, 15 From decomposition at low |
(250, 400 C) temperature,
without added RyBisH o+
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Table 6. Table of Pesks L Total Ton Chronstograns fron DK and
RDX-K, By pH) 5 Decompositions ( CONT' D)

~ Time ' Spectrum
-~ .(minutes) ..Qccurrence. . . (Figure) . ... .. - -Remarks

“49. . . . .Low-T Uncat. 16 ° From some decompogition
runs at low (250, 400°C)
temperature, without added

KyByaHyge

ca 5-7 All 1-8% This region included a
number of weak peaks,
especially from
décomposition at low (250,
400°C) temperature, with
added KyByoHy9e« A peak
with m/% gg ig sometimes
seen at ca 6.5 min; is this
hydroxymethylformamide - QOH?

7 .610.1 Catalyzed; 17 Not reproducible,
Low-T Uncat. Usually highest m/e = 100,
sometimes 110, 114, 149 or
177. Not seen for RIX
alone at high temperature.

8.2 Catalyzed 18 Sometimes occurs,
especially in presence
of K2312H12- Does this
contain B, fragments?

8.610.1 Catalyzed; 19 Not seen for RDX alone at
Low-T Uncat. high temperature.

9.2%0.2 All Conditions 20 Occurs under most
conditions, even weakly at
high (800°C) temperature.
Has m/e 132; beleived to be
MRDX .

9.410.1 All Conditions 2] Occurs under most
conditions, even weakly at
high (800°C) temperature.
Has m/e 132; is this DRDX?

9.940.2 All Conditions 22 Unreacted RDX; always
present regardless of
temperature or presence of

K2ByaHype
105 All Conditions 23 Often present regardless of

temperature or presence of
borohydride.

*Total ITon Chromatogram.
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_IVs DISCUSSION

A. Identification of Chromatographic Peaks

Figures 1-8 show total ion chromatograms for typical catalyzed and

‘:uhcatalyzed runs carried out at 250, 400, 600 and 800°C. The more importént

chromatographic peaks are tabulated in Table 6 -and their spectra are shown in
Figures 10-23. Even under similar conditions of temperature and presence/
absence of catalyst, some variations in presence and intensity of cetain peaks
were seen, However these chromatograms are typical of those obtained under
the conditions in question, Identification of the various peaks in these
complex systems is still in progress, and at present many peaks remain
unidentified. Some complete and partial identifications are discussed

below. Some apparent patterns in effect of catalysis and temperature on the
relative degree of formation of 1,3,5~triazine, one of the more - -
mechanistically significant products formed, are then discussed briefly.

Note that, in these chrcmatograms, the relatively very intense peak(s) at
the beginning of the chromatogram (retention time ca one-half miuute)
correspond to the gaseous products!” (NZO' formaldehyde, CO, COp, Ny, etc.),
that are examined in most studies!™’ on #MX and RDX decomposition, while the
weaker peaks following it are due to less-volatile products, with retention
strengths approximately intermediate between those of the permanent gaseous
products and unreacted RIX.

Unreacted RDX. Other than the gaseous-product peak at ca 0.5 minute, the
most intense peak in the chromatograms shown in Figures 1-8 occurs at ca 9 .8-
10 minutes. This peak is identified as unreacted RDX by comparison of its
mass spectrum with a reference spectrum contained in the NBS library (Table 6,
Figure 22).

1-Mononitroso-3,5-dinitro-hexahydro~1,3,5—-triazine (mononitroso—-RNX,

MRDX) . The peak at ca 9.15 % 0.2 minutes (Table 6, Figure 20) is tentatively

identified as MRNX, based on comparison of its mass spectra and retention
times with those ohtained by injection of an acetone solution of an authentic
sample of a mixture of MRNX and DRDNDX; the author thanks Professor T.R. Brill
for furnishing this sample. The nuestion of the presence of dinitroso-RDX
(DRDX) and trinitroso-RNX among the decomposition products is still under
investigation. Nitrosoamines have been detected previously in HMX and RDX
decompos:ltion,l‘_‘\:'’8'9'l especially in the liquid phase and in solution,

Formamide, HC(= O)NH2, A number of the decomposition runs gave spectra
closely resembling that of formamide for a peak in the 0.8-1.3 minute
region. Non-pyroiytic injections of an authentic sample of formamide suggest
that its retention time on the column used is in this region, and can be quite
broad. However this identification should be considered uncertain due to the
spread in r~tention times and the observation of extra (impurity?) ion-
fragments in the mass spectra of the peaks in question.

1,3,5-Triazine. A number of runs gave computer-run NBS library searches
in which one of the best matches for a peak at ca 0.6 minutes was 1,3,5-
triazine; see for example Figure 9a. The thrze peaks at m/e 38, 39, and 40
are weaker 1in our spectrum (Figure 9a) than in the NBS spectrum (Figure 9b).
This possihle source of uncertainty was resolved by injecting an authentic
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sample of 1,3,5-triazine into our apparatus (Figure 9b); this also showed
weaker peaks at m/e 38, 39, and 40, Thus it seems reasonable to conclude that
the above intensity difference is due to variations between our 5970 MSD-and
the spectrometer that was used to record the authentic spectrum contained in
the NBS library and reptoduced in Figure 9c, Even though not all runs showed
a separate peak at tliis point on their respective total-ion chromatograms, all
did have selected ion chromatograms showing reasonably strong peaks at ca 0.6

~min for m/e 81 (parent peak of 1,3,5-triazine) and m/e 54 (parent-HCN).. It

therefore seems reasonable to conclude - ‘that under these conditicns, 1,3,5-
triazine is formed in every run. Furthermore, peak shapes for the peaks at
m/e 54 and 81 were identical within a given run; this suggests that these ion-
chromatogram peaks came through the column in the same compound.

. Peaks_in the mass spectta of decomposing RDX and HMX have préviously been -
attributed!2:13 ¢4 1,3,5-triazine and closely related species. Also, 1,3,5-

triazine has befg detected from ir multiphoton dicsociation of RDX in a
molecular beam. However, the present work is apparently the first report
of its separation and identification by chromatographic techniques.

Additional Compounds Possibly Present. Several additional compounds are
at least suggested by the mass spectra of various chromatographic peaks, but
without authentic samples or at least spectra on hand, it is hard to be
sure. These compounds include dimethylformamide, HC(=0)-N(CH3),; oxadiazole
derivative (five-membered cyclopentadieneoid ring containing two nitrogens and
one oxygen); and 1,3,5-triazine N-oxide.

The 1,3,5-triazine oxide peak was seen in the absence of KZBI Hy, at
250°C, but was greatly reduced or eliminated at higher temperatures and in the
presence of K,B;,H;5. Note also that detection of 1,3,5-triazine oxide wovld
be in agreement with detection of peaks at m/e 97 and 98 in atmospheric
pressure chemical ionization studies!! on RNX decomposition which have been
carried out at CRDEC.

The peaks of almost equal intensity at m/e 43 and 44 in the 8.2 minute
peak (Figure 18) and in the 0.4 minute peak from KyBj,H;, at 800°C (Figure 25)
seem at least consistent with the presence of B, fragments. 14b

B. Preliminary Observations Concerning Catalyst and Temperature Effects on
Formation of 1,3,5-Triazine

Columns 4-7 of Tables I-IV contain summaries of integrated total
intensities of the almost-unretained (retention time less than ca 0.8 minute)
products, as well as of the peaks corresponding to m/e 44 (believed to be
mostly CO, and N,0), 54 and 81 (the two strongest peaks in the mass spectrum
of 1,3,5~triazine, see Figure 9.). The last five columrs of Tables 1-4
contain the ratios of the areas of the peaks m/e 44, 54 and 81 to the tctal
ion area, and of the integrated areas of the m/e 54 and 81 ions to the m/e 44
ion. The purpose of the ratioing was to compensate at least partially for the
fact that the samples were unweighed, thereby obtaining at least a crude
normalized estimate of the relative amounts of 1,3,5-~triazine formed in the
various runs. This seemed worthwhile because of the possible mechanistic
significance of the formation of 1,3,5~-triazine. Note however the possibility
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of uncertianty due to such factors as changes with temperatire or degree of
catalysis in the relative amounts of the gaseous products.

General Considerations. The portion (ca 0-0.8 minute) of the total ion
chromatogram corresponding to the almost-unretained prodncts often showed
several peak maxima, apparently due to the presence of several different
products. These runs are indicated by an asterisk adjacent to the number in
column 4 (Tables 1~4) or 5 (Table 5).

Furthermore, the peaks at ca 0.6 minuté in the ion chromatograms for m/e
54 and 81 (strongest peaks in the mass spectrum of 1,3,5-triazine) were often
complex, exhibiting a shoulder or even two distinct peaks. Peaks exhibiting
this behavior are indicated by an asterisk next to the numbers in columns 6
and 7 (Tables 1-4) or 7 and 8 (Table 5). This complexity occurred most >ften
in the runs carried out at the two lowest temperatures (250 and 400°C.), and

" often appeared to parallel reduced yields of 1,3,5-triazine (m/e 54 and 81)

relative to total products and m/e 44. The reasons for this behavior are not
understood. Possible explanations include: (a) Vaporization of some RILX out
of the quartz tube, followed by condensation or the walls of the interiace in
which the pyroprobe is inserted and/or the ends of the tube, and further
decompogition of the condensate, resulting in two spurts of gaseous
decomposition products. This seems unlikely, however, since the interface was
maintained at 150°C, a temperature at which decomposition should hbe too slow
to give a second spurt of decomposition products only a few seconds behind the
first. A second possibility might be (b) sequential formation of 1,3,5-
triazine by two different decomposition mechanisms, resulting in two spurts of
1,3,5~triazine; however there is no evidence for this. A third possibility
involves (¢) decomposition of different portions of the sample at different
times, due to uneven distribution of the sample in the tube. This does not
seems unreasonable, in view of the length of the pyrolysis event (20 seconds
or even more, since there was undecomposed material remaining in the tube
after the 250 degree decompositions), compared to the time (several seconds)
between the two portions of the splic peak. The reduced amounts of 1,3,5-
triazine formed in runs with complex m/e 54 and 81 peaks could possibly be
explained in terms of (a) or (c¢) if the triazine is formed at least partially
in a bimolecular reaction of unreacted RDX with a decomposition product, since
such reactions might be expected to he less important if the sample is small
or highly dispersed.

The m/e 54 and 81 peaks marked with asterisks in the tables were not
considered in preparing the following discussion, since it was felt that they
might not be comparable with the i1uns whose m/e 54 and 81 peaks were
relatively well-behaved. 1In a few cases, asterisked peaks whose complexity
seemed only slight are marked with a question mark next to the asterisk; these
peaks were considered but given less weight.

The m/e 44 peaks seem fairly well-behaved; in only a very few cases are
there any complexities or odd-shaped peaks. Furthermore, the area ratios
between these peaks and the total ion intensities show much less variation for
a given temperature and Jegree of catalysis than do the m/e 54 and 81 peaks.
This indicates that the mass spectrometer and associated computers and
integrating aoftware are functioning properly, and that the apparent unruly
behavior of the 1,3,5-triazine peaks at m/e 54 and 8] is not due to instrument
malfunction or to operator error.

31



Effect of Catalyst on Relative Intensities of m/e 44 and 1,3,5-Triazine
Peaks. If the asterisked m/e 54 and 81 peaks are dropped from consideration,
it appears (Tables 1-5) that addition of KBy as a catalyst causes (a) an
increase in relative amount of m/e 44 (N 0 ang co ), and (b) a decrease in
réelative amount of 1,3,5-ttriazine formed. These conclusions follow from the
lagt five columnsg of the tables, which show area ratios for the m/e 54 and 81
peaks to thé total intensity and to the intensity of the m/e 44 peak, and for
the m/e 44 peak to the total intensity. There are some exceptions, for
example run 59 (Table 4) is an exception to both correlations and run 77, also
1n Table'A is an exception to (a). The amount of change caused by adding the

also geems to vary from run to run, being for example negligible in
un 0 gut significant in run 61 (Table 1). Nevertheless, based on the
preponderance of the data in Tables 1-5, it seems reasonable to draw
conclusions (a) and (b).

Effect of Temperature on Relative Intensities of m/e 44 and 1,3,5-
Triazine Peaks. Increasing the decomposition temperature between 250°C and
600°C causes a decrease in the relative iaount of m/e 44 and an increase in
the relative amount of the 1,3,5-triazine peaks (m/e 54 and 81); but these
trends are not continued on increasing temperature further, Eo 890 « In the
250-600 degree range this is in agreement with previous work which
suggests that the amount of products such as N,0, Ny and H,CO decreases with
increasing decomposition temperature, while the yie%ds of products such as
HCN, NO and N0, increase. Possitle explanations for failure of the trends to
continue to the 800°C region include temperature-induced shifts® in the
composition and/or amount of decomposition products, or thermal decomposition
of 1,3,5-triazine at temperatures above 600°C.

C. Chemical Mechanisms

Chemical Mechanisms Involved in the Uncatalyzed Decomposition of HMX and
RDX. The ultimate goal of the present work involves reaching an understanding
‘of the chemical mechanisms in volved in borohydride catalysis of nitramine
decomposition. However in order to accomplish this it will of course be
necessary to understand the decomposition of uncatalyzed HMX and RDX as a
baseline on whaich to base our understanding of the borohydride—catalyzed
decomposition of these materials,

Note that the following discussion refers specifically to thermal
decomposition and not to the ion fragmentation seen in mass spectrometers,
The present writer generally thinks of RDX decomposition in the liquid phase
as proceeding through a main pathway involving chemical mechanisms similar to
the following (References 1-7; see especially References 4-6).

There is an observed tendency for formation of more HCN and N0, and less
HyC=0 and N,O at higher temperatures and heating rates; this could possibly be
understood® in terms of a shift between the pathways shown (Scheme I) for
decomposition of HyC~N-NO,. Note that intermediacy of the N-nitrofoirmimine
HyC=N-NO, is not necessary in order to account for the formation of N,0 and
H,C=0; thesn could also be formed by a mechanism such as that given in Scheme
I1.

Autoacceleratory behavior could occur through bimolecular followup

reactions involving attack on hydrogen and oxygen by H| and other radical
spectesa' 12,15 formed in the reaction, as shown in Schemes 1II and 1IV.
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Note however that Melius and Binkley have recently argued,15 on the basis
of BAC-MP4 MO calculations, that the formaldehyde and N,O are not formed by
the mechanisms of either Scheme I or Scheme II, They are uncertain as to the
exact pathways by which these materials are formed., However their reaction
schemes do include formation of NOy and HyCN. via decomposition of BHZG-N-Noz)
as shown in Scheme I above.

Furthermore, Zhao, Hintsa and Lé:laa have studied RDX decomposition by
infrared multiphoton dissociaticn and have reported that concerted pathways
(e, RDX ===> 3ﬂzc-N-N02) are more important than ha~ been heretofore
suspected.
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SCHEME 1TV

[n addition to the pathway of Scheme TV, nitrosocamines could be formed
via N-NO, cleavage and recombination with NO formed in the decomposition
(Scheme V).
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The identification in the preseat work of 1,3,5-triazine seems of
considerable interest because of its potential mechanistic significance. This
significance arises because its presence indicates the occurrence of pathways
not involving initial C-N cleavage; however these pathways could involve
initial N-NO, cleavage, HONO elimination or H-sbstraction by NO, or other
radical species formed in the decomposition,

Possible mechanisms for formation of 1,3,5-triazine include: (a)
formation via primary N-NO, cleavage (Scheme VI); (b) formation via primary
HONO elimination (Scheme ViI); (¢) formation via initial abstraction of a
hydrogen atom by NO, or some other radical species formed in the reaction
(Scheme XIII); (d) formation via the nitroxide reported on the basis of ESR
studiesl® (Scheme IX); and (e) trimerization of HCN formed in the
decomposition of RDX (Scheme X).
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SCHEME X

Formation of triazine via trimerization of HCN should be considered but
seems relatively unlikely, since trimef’zation of nitriles closely related to
HCN, such as CH;CN, appears to require’’ not only elevated temperatures but
pressures in the range 8-10 kilobat? and reaction times of hours (as opposed
to 20 seconds in the present work). 7 HCN itself trime;izes"under milder
conditions, but acid catalysis is apparently required.l Note that some acid
products such as HONO and HNO5 can be formed in HMX and RDX decomposition.

However, it seems difficult to rule out HCN trimerization conclusively
except by scrambling studies in mixtures of fully-ring-labeled and unlabeled
RNX; we are presently planning to carry out such studies in connection with
planned studies on N-N0, scrambling in decomposition of mixtures of fully-
labeled and unlabeled RDX, both alone and in mixtures with borohydride
salts. It is true that decgmgositionl8 of HMX (which does not possess a six-
membered ring, but is known™ >’ to give HCN as a product of thermal
decomposition) also gives 1,3,5-triazine. However, HMX would give 1,3,5,7-
tetrazocine after loss of the elements of four molecules of HONO ngpathways
analogous to Schemes VI-VIII. By analogy with the known chemistry'’ of
cyclooctatetraene, azocine and di- and triazocines (which are known!? to yield
respectively benzene and azahenzenes on thermolysis), it does not seem
unreasonable to suppose that 1,3,5,7-tetrazccine might decompose further to
1,3,5~-triazine,

The H-, HONO- and NOy-stripping pathways shown in Schemes VI-VIII are
presumably relatively minor pathways relative to the frag.entation pathways
shown in Schemes I-IV. This follows from the small amounts (ca 5-10 percent)
of 1,3,5-triazine (m/e 54 and 81) formed relative to m/e 44 (probably mainly
NZO and COZ).

Pogssible Chemical Mechanisms Involved in Catalysis of HMX and RDX
Decompogsition by Borohydride Salts. It is possible to imagine at least three
main types of initial pathways which might contribute to catzlysis of HMX or
RDX decomposition by borohydrides:

1. Decompostion of nitramine is initiated by direct reaction between
nitramine and borohydride; for example by electron transfer, by attack of a B-
H bond on nitro oxygen of the nitramine, or bv a combination of these
mechanisms,

2. An early decomposgition product, for example Noz, of the nitramine

reacts with the catalyst to form products or intermediates, possibly free
radicals, which react further with the nitramine, resulting in catalysis,
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3. Unimolecular decomposition of the catalyst generates products or
internediates which react with nitramine, causing it to decompose faster than

it otherwise would.

At present there is insufficient evidence to distinguish between these
possibilities. Nevertheless, the following comments seem relevant.

A possible pathway of type (1) can be written based on a suggeationzo
contained in a Russian study of the reaction of a variety of nucleophilic
reagents, ‘ncluding sodium borohydride (NaBH,), with difluorodinitromethane,
CF,(NO,). The radicals produced were studieﬁ by ESR and trapping techniques,
and identified as W and +CF)NO,. Their formation was rationalized in terms
of the follow1ng m.: hanism:

CFz (NOZ)Z . BH4 O —% CFZ (NOZ)Z Q + H - BH3

SCHEME XI

An analogous mechanism for catalysis of RDX decomposition by LOLIPLITICL
K2B1oM10 might be written as follows:

ROX + BpoHy O3 rx® ou « ByoHp

—-  Products

ROX + H* -——9 Products

SCHEME XI1T

Pathway (3) seems relatively unlikely, at least at lower temperatures;

this is based on the apparent inertness®’ of salts closely related to K,8,,H;,
when treated under conditions (200-500°C) as severe or more so than the 200-
300°C temperatures which cause decomposition of HMX or RDX alone, and at which
borohydride catalysis of HMX/RDX decomposition is observed. However it was
reported that above 505°C, Na LPLITS underwent exothermic thermal-oxidative
degradation accompanied by a gain iIn weight equivalent to one oxygen atom per
formula weight of the anhydrous salt, and that above 830°C it burned.
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